Cavity opto-mechanics using an optically levitated nanosphere
نویسندگان
چکیده
منابع مشابه
Cavity opto-mechanics using an optically levitated nanosphere.
Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach...
متن کاملCavity cooling of an optically levitated submicron particle.
The coupling of a levitated submicron particle and an optical cavity field promises access to a unique parameter regime both for macroscopic quantum experiments and for high-precision force sensing. We report a demonstration of such controlled interactions by cavity cooling the center-of-mass motion of an optically trapped submicron particle. This paves the way for a light-matter interface that...
متن کاملShort-range force detection using optically cooled levitated microspheres.
We propose an experiment using optically trapped and cooled dielectric micro-spheres for the detection of short-range forces. The center-of-mass motion of a microsphere trapped in vacuum can experience extremely low dissipation and quality factors of 10(12), leading to yoctonewton force sensitivity. Trapping the sphere in an optical field enables positioning at less than 1 μm from a surface, a ...
متن کاملToward Quantum-Limited Position Measurements Using Optically Levitated Microspheres
We describe the use of optically levitated microspheres as test masses in experiments aimed at reaching and potentially exceeding the standard quantum limit for position measurements. Optically levitated microspheres have low mass and are essentially free of suspension thermal noise, making them well suited for reaching the quantum regime. Table-top experiments using microspheres can bridge the...
متن کاملSearch for millicharged particles using optically levitated microspheres.
We report results from a search for stable particles with charge ≳10^{-5}e in bulk matter using levitated dielectric microspheres in high vacuum. No evidence for such particles was found in a total sample of 1.4 ng, providing an upper limit on the abundance per nucleon of 2.5×10^{-14} at the 95% confidence level for the material tested. These results provide the first direct search for single p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2009
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0912969107